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Industrial Robotics Evolves Very Fast!

Industrial robots are now complex cyber-physical systems
(motion control and perception systems, multi-robots sync.,
remote control, Inter-}vv 8§ (}E % & ] S]A u ]vSs

Theh/ are used to perform safety-critical tasks in complete autonomy
(high-voltage component, on-demand painting with color/bresiange, ..)
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And to collaborate with human co-workers



Testing Robotic Systems is Crucial and Challenging

1The validation of industrial robots still involve too much huntetmour
T/MHurry-up, the robots are uncagedW & Jop®& « & vVv}S vCu}E&E Z v o
1Robot behaviours evolve with changing working conditions

TToday, industrial robots can be taught by-imitation.
Tomorrow, they will learn by themselves

More
automation
in testing

More
diversity in
testing

More
efficiency in
testing
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ATypical Cycle of Continuous Integration: Timeline

SOmITAI — Test Case Selection/Generatiorn_ {
Software / —
—— Test Suite Reductio
feedback

Software — Test Case Prioritizati
0 Deployment
5 S — Test Execution Scheduling
' oftware
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+ Test Execution




Artificial Intelligence in a Nutshell
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Al for Improved Software Engineering / Software Testing
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OurFocus: Artificial Intelligence for Improving Sdtware Tegting

1. Automatic :
Test Case 2. Test Suite

Generation Reduction
Global Constraints
3. Test
Ij . TestCase | pyacution
rioritization Scheduling

o
States:

Test Suite reward
ral r.

y = [ Environment:
«=— ClCycle

Reinforcement Learning
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Constraint Modelling

1.
Automatic 2. Test Suite
Test Case Reduction
Generation
‘ 3. Test
4. Test Case | gyacution
Prioritization | Scheduling

1. Automatic Test Case Generation



smia A Typical Robot Painting Scenarig

Crucial test objective:
to validate that physical outputs
are triggered on expected time

Start of,

SetBrush 1 at x:=300 Currentpractice:

pf?;scilctgl . Main issue:
. _ 5
subprocesseg Canwe automate this testing process”

Canwe integrate an Al model into Continous Testing

Paint V alve=0n at x;=50

Set Fluid=100 at x:=100 (Pump, mL/min)

Set Atom=15000 at x:=180 (Air flow, L/min)

I
_ X=300ms - | Set Shape=7500 at x:=250 (Air flow, L/min)
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Issues fodeployment

B PL with Python
testirwmwork and
consiraimmode]

1. Canwe control the solving time wrt
the test execution time?

2. Is this Constraint-based Testing
approach interesting to find bugs?

3. Canwe ensure enough diversity
in the generated test scenarii?




E: Efficiency factor

smua - Industrial Deployment b Soming fme

[Mossige S oX WJ[idoU /~d[ifie  tn:Testexec.time
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Hntegrated throug [ +Continuous Integration process
TConstraint model is solved ~15 times per day

During initial deploymentit found 5 critical bugs
+dozens of (non-critical) new bugs

But, since then, bug discovery has decreased!
still working on

1. Maximizing the diversity among test scenarii
= 2. Generating test scenarios for multi-robots
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Global Constraints

2. Test Suite Reduction

1. Automatic 2. Test
Test Case Suite

Generation Reduction

3. Test
Ig,._Te_s_t Case  Eyecution
rioritization Schedu”ng



sma  1€St Sulte Reduction: the core problem

F: Features / User Requirements
TC: Test Cases

Optimally Reduced
Test Suite

Findinga near-optimal
solution in a given
contract of timeis

sufficient!
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simula Other criteria to minimize

Feature coverage
IS alwaysa prerequiste

Optimally Reduced
Test Suite

Execution time!
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simula Other criteria to minimize

High priority
Feature coverage

Is alwaysa prerequiste Lowpriority

High priority
Lowpriority
Lowpriority

Lowpriority

Fault revealing capabilities!
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simuls Test Suite Reductiokxisting Approaches

- Exact methods: Integer Linear Programmifigsu Orso ICSE 2009, Campos Abféy  T1iiU Y s
Minimize A @54skE (minimize the number of test cases
aa.
Tg ETR

E T
subject to{ T,ET R s } (cover every featureat least once)
TET RS

- Approximation algorithms (greedgearch-based methodgHarrold § oX dK”~ D i66iU Ye

F = Set ofeqgs Current=@
while( Currenta &
Select a test case that covers the most uncovered features ;
Add covered features to Current ;
return Current

- Alpowered method:

Constraint Programming with Global ConstraintgGotlieb et al. ISSTA 2014, Al MagaZinéo U Y »
_ Multi-Criteria Test Minimization €t vP § oX A~ TiifdaU 2~ 1iiAU Yo
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IRB 5500 IRB 5400-22 IRB 580

Rail sys IRB 5400-12 IRB 58

Unoptimized
test suite

18

IRB 540

IRB 52

gcc: global cardinality constraint

Powerfull Al combinatorial tool

Variability model to
describe a product line

(

Diagnostic views, feature coverage

-

Optimized
(reduced)
test suite



“me Comparison with CPLEX, Mini$#€edy (uniform costs)

(Reduced Test Suite percentage in 60 sec)
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1. Automatic

Test Case ZI'QT§St tS utte
Generation eduction
3. Test
Ijf._Te_tS_t Ci_ase Execution
rioritization Scheduling

3. Test Execution Scheduling
—)

Constraint-based Scheduling
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smua - Test Execution Scheduling

Assignment of Test Cases to Agents such that:

T?St C_as.es 1. Capacity constraints are not exceeded
with distinct :

gy 2. Test Agents are well occupied
characteristics

3. Test Execution Time is minimized

 Schedule 2

Test Agents Additionally, there can be some
(Robots) shared global resources among test cases
with limited (e.g., flow meter, oscilloscope, FDPHUD _ «

(time or resources)
capacity
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Constraint Models for Test Scheduling

TestCases Repository:

ABB

Diverse tested features

¥//

Constraint-based scheduling Models
: 1. Greedy approach
- durat . :
- pl'lrggrli?y? 2. Constraint-based scheduling
[- history] 3. Advanced Constraint-based scheduling
using bin-packing

Test Cases:

1 Deployedat ABB in Cl / «Good Enough»
2 Evaluated Needs Improvements

3 Deploymentin progress

22




smia  Expeimental resuts(Canparing model 3 vs model 1)

But, handling test case diversity is
challenging!
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1. Automatic
Test Case
Generation

4. Test Case
Prioritization

4. Test Case Prioritization

Reinforcement Learning

2. Test Suite
Reduction

3. Test
Execution
Scheduling



simula - Motivation: Learning from previous test runs of the robot control syste

T Adapt testing to focus on the more error-prone parts of the testgsteam

T Adapt testing to the execution environment (available robots dadices, limited testing
time and resources, experiences from previous cycles in continuougy atiten)

25
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Using Reinforcement Learning to prioritize test case execution

T Considering test case meta-data only (test verdicts, tested mylmdecution time, ...YElightweight method
T Reward function based on test verdicts from the previous Cl-cy#esline ML
T Limited memory of past executions / test results

Implemented with distinc
memory models and
reward functions

26



simula Does it learn?

3 Industrial data sets (1 year of Cl cycles)
NAPFD: Normalized Average Percentage of Faults Detected

27
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Lessons Learned and
Emerging Topics
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Lessons learned

HIindustrial Roboticss an interesting application field for Al-powered software testing approaches

tMore automationis highly desired in industrial robotics
Alisa key-enabler for Release better, release faster, release cheaper!

TAdoption of (robust) Al techniguebeneficial in test automation and optimization:

}vesE& Jvs WE}PE uvu]JvPU ~ Z po]vPU Z Jv(}& u vs > Ev]vPU

Many Emerging Challenges!

29



*mi@  Emerging Topics

30

fTesting Learning RobotRCN T-LARGO Project

iMachine Learning in Continuous Testing Processes
(Collaboration Smartesting

Thanks to:
{Al-on-demand platform for performance testing of Dus@aMaijan(SIMULA, Norway)
industrial robots(AI4EU H2020 Proposal) MateanMssie(ABB Robdtiosway)
HelgSpiderSIMULA, Norway)
fTesting Human Perception of Robot Safety SuaWan@IMULA, Norway)

MeisLiaeen(CISCO Sydimsay)
MetsCalsso (SICS, Sweden)
CalolevéSIMULA, Norway)
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