
Artificial Intelligence in
Software Testing: An Overview

Application to Industrial Robotics

JFTL 2018 �t 10 april 20181/30

Arnaud Gotlieb
Simula Research Laboratory
Norway

2

Software Validation and Verification

The Certus Centre

www.certus-sfi.no

Cisco Systems Norway

Cancer Registry of Norway

ABB Robotics

Kongsberg Maritime

http://www.certus-sfi.no/

4

Industrial Robotics Evolves Very Fast!

Industrial robots are now complex cyber-physical systems
(motion control and perception systems, multi-robots sync.,
remote control, Inter-���}�v�v�����š�������(�}�Œ���‰�Œ�����]���š�]�À�����u���]�v�š���v���v�����U���Y�•

They are used to perform safety-critical tasks in complete autonomy
(high-voltage component, on-demand painting with color/brush change, ..)

And to collaborate with human co-workers

5

Testing Robotic Systems is Crucial and Challenging

�‡The validation of industrial robots still involve too much human labour

�‡� Ĥurry-up, the robots are uncaged!�_�W�����&���]�o�µ�Œ���•�����Œ�����v�}�š�����v�Ç�u�}�Œ�����Z���v���o�������µ�•�]�v�P���(���v�����•

�‡Robot behaviours evolve with changing working conditions

�‡Today, industrial robots can be taught by-imitation.
Tomorrow, they will learn by themselves More

automation
in testing

More
diversity in

testing More
efficiency in

testing

A Typical Cycle of Continuous Integration:

Developer
commit

Software
building

Software
Deployment

Software
Testing

Developer
feedback

Test Case Selection/Generation

Test Suite Reduction

Test Case Prioritization

Test Execution Scheduling

Timeline

+ Test Execution

Artificial Intelligence in a Nutshell

Perception Representation Cognition Interaction Execution

Explainable AI - Verified AI - Certifiable AI

Computer
Vision

Natural
Language
Processing

Multi-Agent
Systems Optimization

Conceptual
Graphs

Deep
Learning

Human-
Machine

Interactions

Planification

Scheduling
Pattern

Recognition

Multi-Criteria
Decision

Conditional
Preference
Networks

Reinfocement
Learning

Constraint
Programming

AI for Improved Software Engineering / Software Testing

8

2. Test Suite
Reduction

3. Test
Execution
Scheduling

4. Test Case
Prioritization

1. Automatic
Test Case

Generation

Our Focus : Artificial Intelligence for ImprovingSoftware Testing

Constraint Modelling

Constraint-based SchedulingReinforcement Learning

Global Constraints

99

1. Automatic Test Case Generation
Constraint Modelling

2. Test Suite
Reduction

3. Test
Execution
Scheduling

4. Test Case
Prioritization

1.
Automatic
Test Case

Generation

10

A Typical Robot Painting Scenario

SetBrush 1 at x:=300

Need to call 4
physical
subprocesses

Paint V alve=On at x:=50

Set Atom=15000 at x:=180 (Air flow, L/min)

Set Shape=7500 at x:=250 (Air flow, L/min)

Start of
�Z���Œ�µ�•�Z�[

X=300ms

Set Fluid=100 at x:=100 (Pump, mL/min)

Crucial test objective:
to validate that physical outputs
are triggered on expected time

Main issue:
Can we automate this testing process?
Can we integrate an AI model into Continous Testing?

Currentpractice:

11

Test oracle

tt
I/O-

1
tt I/0-2 tt

I/O-
3

295 75 120 150 205 75

579 500 500 175 585 150

879 75 780 150 881 75

1195 0 1130 0 1231 0

Test sequence

ti Bi

300 1
600 2
900 1
1200 0

Test results

tt
I/O-

1
tt I/0-2 tt

I/O-
3

294 75 121 150 205 75

579 500 501 175 585 150

880 75 792 150 880 75

1197 0 1131 0 1232 0

Compare

AI-Powered Model of IPS

Issues for deployment:

1. Can we control the solving time wrt
the test execution time?

2. Is this Constraint-based Testing
approach interesting to find bugs?

3. Can we ensure enough diversity
in the generated test scenarii?

12

Industrial Deployment
[Mossige���š�����o�X�����W�[�í�ð�U���/�^�d�[�í�ñ�•

�‡Integrated throug�������[�•Continuous Integration process

�‡Constraint model is solved ~15 times per day

E: Efficiency factor
ts : Solving time
tN : Test exec. time

E = SeqLen / (ts + tN)

SeqLen =
50
100
150
200
250
300

Size of the
Brush Table=

10
15
20

But, since then, bug discovery has decreased!
still working on

1. Maximizing the diversity among test scenarii
2. Generating test scenarios for multi-robots

During initial deployment, it found 5 critical bugs
+ dozens of (non-critical) new bugs

1313

2. Test Suite Reduction

2. Test
Suite

Reduction

3. Test
Execution
Scheduling

4. Test Case
Prioritization

1. Automatic
Test Case

Generation

Global Constraints

14

Test Suite Reduction: the core problem

F1

F2

F3

TC 1

TC 2

TC 3

TC 4

TC 5

TC 6

Optimally Reduced
Test Suite

Fi: Features / User Requirements
TC: Test Cases

Findinga near-optimal
solution in a given
contract of time is

sufficient!

NP-hard
problem!

15

Other criteria to minimize

F1

F2

F3

TC1

TC4

TC5

TC6

Feature coverage
isalwaysa prerequiste

Optimally Reduced
Test Suite

Execution time!

TC2

TC3

1 min

5 min

3 min

3 min

1 min

1 min

16

Other criteria to minimize

F1

F2

F3

TC1

TC4

TC5

TC6

Feature coverage
isalwaysa prerequiste

Fault revealing capabilities!

TC2

TC3

High priority

Lowpriority

High priority

Lowpriority

Lowpriority

Lowpriority

17

Test Suite Reduction: Existing Approaches

Minimize �Ã�Ü�@�5�ä�ä�:�T�E (minimize the number of test cases)

subject to
�T�s E �T�t E �T�x R �s

�T�uE �T�v R �s
�T�t E �T�w R �s

(cover every feature.at least once)

- Exact methods: Integer Linear Programming[Hsu Orso ICSE 2009, Campos Abreu�Y�^�/�����î�ì�í�ï�U�Y�•

- Approximation algorithms (greedy, search-based methods) [Harrold���š�����o�X���d�K�^���D���í�õ�õ�ï�U���Y�•

- AI-powered method:
Constraint Programming with Global Constraints [Gotlieb et al. ISSTA 2014, AI Magazine �î�ì�í�ò�U���Y�•��������

Multi-Criteria Test Minimization �€�t���v�P�����š�����o�X���:�^�^���î�ì�í�ñ�U�����^�����î�ì�í�ñ�U���Y�•

F = Set of reqs, Current = Ø
while(Current�å���&�•

Select a test case that covers the most uncovered features ;
Add covered features to Current ;

return Current

18

Optimized
(reduced)
test suite

Unoptimized
test suite

Diagnostic views, feature coverage

Variability model to
describe a product line

IRB 52

IRB 5400-22 IRB 580 IRB 540

IRB 5400-12

IRB 5500

IRB 58Rail sys

gcc: global cardinality constraint
Powerfull AI combinatorial tool

1919

Comparison with CPLEX, MiniSAT, Greedy (uniform costs)
(Reduced Test Suite percentage in 60 sec)

2020

3. Test Execution Scheduling

2. Test Suite
Reduction

3. Test
Execution
Scheduling

4. Test Case
Prioritization

1. Automatic
Test Case

Generation

Constraint-based Scheduling

2121

Test Execution Scheduling

Test Cases
with distinct
characteristics

Test Agents
(Robots)
with limited
(time or resources)
capacity

Assignment of Test Cases to Agents such that:

1. Capacity constraints are not exceeded
2. Test Agents are well occupied
3. Test Execution Time is minimized

Schedule

Additionally, there can be some
shared global resources among test cases
(e.g., flow meter, oscilloscope, �F�D�P�H�U�D�����«��

22

Constraint Models for Test Scheduling
10..30 code changes per Day

Test Cases Repository:
~10,000 Test Cases (TC)
~25 distinct Test Robots
Diverse tested features

Test Cases:
- duration
[- priority]
[- history]

Constraint-based scheduling Models
1. Greedy approach
2. Constraint-based scheduling
3. Advanced Constraint-based scheduling

using bin-packing

1 Deployedat ABB in CI / «Good Enough»

2 Evaluated/ Needs Improvements

3 Deployment in progress

T2, T5,
T34 T45,

T55
T4,
T56,
T67

T7,
T23

T3, T6,
T45,
T78

ABB

23

Experimental results(Comparingmodel 3 vs model 1)

But, handling test case diversity is
challenging!

2424

4. Test Case Prioritization

2. Test Suite
Reduction

3. Test
Execution
Scheduling

4. Test Case
Prioritization

1. Automatic
Test Case

Generation

Reinforcement Learning

2525

Motivation: Learning from previous test runs of the robot control systems

�‡ Adapt testing to focus on the more error-prone parts of the tested system

�‡ Adapt testing to the execution environment (available robots and devices, limited testing
time and resources, experiences from previous cycles in continuous integration)

2626

Using Reinforcement Learning to prioritize test case execution

�‡ Considering test case meta-data only (test verdicts, tested robots, execution time, ...) �Ælightweight method
�‡ Reward function based on test verdicts from the previous CI-cycles �Æonline ML
�‡ Limited memory of past executions / test results

Implemented with distinct
memory models and

reward functions

2727

Does it learn?
3 Industrial data sets (1 year of CI cycles)
NAPFD: Normalized Average Percentage of Faults Detected

2828

Lessons Learned and
Emerging Topics

29

Lessons learned

�‡Industrial Roboticsisan interesting application field for AI-powered software testing approaches

�‡More automation ishighly desired in industrial robotics
AI isa key-enabler for Release better, release faster, release cheaper!

�‡Adoption of (robust) AI techniques beneficial in test automation and optimization:

���}�v�•�š�Œ���]�v�š���W�Œ�}�P�Œ���u�u�]�v�P�U���^���Z�����µ�o�]�v�P�U���Z���]�v�(�}�Œ�����u���v�š���>�����Œ�v�]�v�P�U���Y

Many Emerging Challenges!

30

Emerging Topics

�‡Testing Learning Robots (RCN T-LARGO Project)

�‡Machine Learning in Continuous Testing Processes
(Collaboration Smartesting)

�‡AI-on-demand platform for performance testing of
industrial robots (AI4EU H2020 Proposal)

�‡Testing Human Perception of Robot Safety

Thanks to:
DusicaMarijan(SIMULA, Norway)
MortenMossige(ABB Robotics, Norway)
HelgeSpieker(SIMULA, Norway)
ShuaiWang (SIMULA, Norway)
Marius Liaeen(CISCO Systems, Norway)
Mats Carlsson (SICS, Sweden)
Carlo Ieva (SIMULA, Norway)
����

31

1. [Spieker et al. 2017] H. Spieker, A. Gotlieb, D. Marijan and M. Mossige
Reinforcement Learning for Automatic Test Case Prioritization and Selection in Continuous Integration
In Proc. of 26th Int. Symp. on Soft. Testing and Analysis (ISSTA-17), Santa Barbara, USA, July 2017.

2. [Gotlieb Marijan 2017] A. Gotlieb and D. Marijan
Using Global Constraints to Automate Regression Testing AI Magazine 38, Spring, 2017.

3. [Marijan et al. 2017] D. Marijan, A. Gotlieb, M. Liaaen, S. Sen and C. Ieva
TITAN: Test Suite Optimization for Highly Configurable Software
In Int. Conf. on Soft. Testing, Verification and Validation (ICST-17), Tools Track, Tokyo, Japan, 2017.

4. [Mossige et al. 2017] M.Mossige, A. Gotlieb, H. Spieker, H. Meling, M. Carlsson
Time-aware Test Case Execution Scheduling for Cyber-Physical Systems
In Principles and Practice of Constraint Programming (CP-17) �t Application Track, Melbourne, Australia, Aug. 2017

5. [Gotlieb et al., 2016] A. Gotlieb, M. Carlsson, D. Marijan and A. Petillon
A New Approach to Feature-based Test Suite Reduction in Software Product Line Testing
In 11th Int. Conf. on Software Engineering and Applications (ICSOFT-16), Lisbon, July 2016, Awarded Best Paper

6. [Mossige et al., 2015] M. Mossige, A. Gotlieb, and H. Meling.
Testing robot controllers using constraint programming and continuous integration.
Information and Software Technology, 57:169-185, Jan. 2015.

7. [Wang et al., 2015] S. Wang, S. Ali, and A. Gotlieb.
Cost-effective test suite minimization in product lines using search techniques.
Journal of Systems and Software 103: 370-391, 2015.

8. [Gotlieb et al., 2014] A. Gotlieb and D. Marijan.
Flower: Optimal test suite reduction as a network maximum flow.
In Proc. of Int. Symp. on Soft. Testing and Analysis (ISSTA-14), San José, CA, USA, Jul. 2014.

9. [Mossigeet al., 2014] M. Mossige, A. Gotlieb, and H. Meling.
Using CP in automatic test generation for ABB robotics' paint control system.
In Principles and Practice of Constraint Programming (CP-14) �t Awarded Best Application Paper, Lyon, Fr., Sep. 2014.

References

